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We consider the spin-1/2 Heisenberg XXZ chain in the regime of large Ising-type anisotropy �. By a
combination of duality and Jordan-Wigner transformations we derive a mapping to weakly interacting spinless
fermions, which represent domain walls between the two degenerate ground states. We develop a perturbative
expansion in 1 /� for the transverse dynamical spin structure factor at finite temperatures and in an applied
transverse magnetic field. We present a unified description for both the low-energy temperature-activated
response and the temperature evolution of the T=0 two-spinon continuum. We find that the two-spinon
continuum narrows in energy with increasing temperature. At the same time spectral weight is transferred from
the two-spinon continuum to the low-energy intraband scattering continuum, which is strongly peaked around
the position of the �single� spinon dispersion �“Villain mode”�.
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I. INTRODUCTION

The spin-1/2 Heisenberg XXZ chain is a paradigm in low-
dimensional quantum magnetism. Its Hamiltonian is

H = J�
n

�Sn
zSn+1

z + Sn
xSn+1

x + Sn
ySn+1

y + �
n

h · Sn, �1�

where h is an external magnetic field and � controls the
exchange anisotropy. The one-dimensional case is particu-
larly significant because for a field h parallel to the ẑ direc-
tion, the Hamiltonian is integrable and the spectrum of the
spin chain may be extracted exactly.1–4 Furthermore the
Hamiltonian �1� is thought to provide a realistic description
of several quasi-one-dimensional �1D� experimental com-
pounds. Examples include Cs2CoCl4 for which �=0.25,5–7

CsCoBr3,8,9 CsCoCl3,10 and TlCoCl3 �Ref. 11� all of which
have ��7.

For ��1, h=0, and T=0 the XXZ spin chain is in a Néel
phase. The fundamental excitations take the form of gapped
fractionalized spin-1/2 quantum solitons known as spinons.12

Strictly in the Ising limit, �=�, the spinons can be identified
simply as domain walls with gap � /2. Experiments have
established the existence of several manifestations of the
XXZ model in the Ising regime.8–11 In some cases these ex-
periments have also probed the effects of temperature9,13 and
transverse field13 on dynamical spin-spin correlations.

The measure of dynamical correlations known as the dy-
namical structure factor �DSF� is an important quantity in the
study of quantum magnets.14 This is for two reasons: first,
the dynamical structure factor is directly measurable by in-
elastic neutron-scattering experiments and second, the nature
of the dynamical response is highly specific to the system in
question, so that it serves as a characterization tool. A par-
ticular feature that one would like to understand in the case
of the XXZ chain is the finite-temperature low-energy spin
response known as the “Villain mode.”15 This response due
to scattering between domain-wall pair states has been ob-
served in Refs. 9 and 13. As this response occurs only at
finite temperatures it necessitates a theory that accounts for
thermal fluctuations. A recent analysis of the continuum limit

of two gapped integrable quantum spin chains16 has shown
that at raised temperatures the effect of thermal fluctuations
cannot be described in terms of a simple thermal decoher-
ence or relaxation-time picture. Instead markedly asymmet-
ric thermal broadening of single-particle modes is observed.
This paradigm has been found to be in agreement with
theoretical17,18 and experimental19 studies of the spin-1/2
Heisenberg chain with strongly alternating exchange, a
model which is gapped but not integrable. In contrast the
gapped excitations in the spin-1/2 XXZ chain occur only in
pairs; it is then interesting to try and understand the thermal
evolution of the resulting two particle response in addition to
that of the Villain mode.

Despite the advantages afforded by integrability, the task
of calculating correlation functions �and hence dynamics� for
spin chains is still far from simple. For example, the case
�=0, h= �0,0 ,h� corresponds to the XY chain with a finite
field in the z direction, for which the excitations are de-
scribed exactly by noninteracting spinless fermions.20 This
allows one to calculate the two-point function of Sz by
elementary means even for T�0.21 On the other hand the
determination of transverse correlations is a nontrivial
problem.22,23

For the XXZ chain first-order perturbative treatments
around the �=� limit8,15,24 and 1 /S expansions25 have given
some insight. In recent years significant progress has been
made for the ��1 regime, both via Bethe’s Ansatz26 and a
different exact technique which works directly with the ther-
modynamic limit.27 This has lead to an exact expression for
the transverse dynamical correlations at T=0.26,28 Results at
finite temperature are generally still limited to asymptotically
exact thermodynamic quantities.29–32 However there have
been promising advances that rely on generalizing multiple
integral representations for time-dependent correlation func-
tions to finite temperatures.33–36 Currently these methods
have not yielded expressions for the most experimentally
relevant quantity—the dynamical structure factor.

In this paper we present a perturbative calculation for the
transverse spin response in the ��1 limit, valid at finite
temperatures and capable of incorporating a transverse field.
We note that the temperature dependence of the dynamical
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structure factor in the critical −1���1 regime has been
determined by exact diagonalization of short chains and very
recently by quantum Monte Carlo and density matrix renor-
malization group �DMRG� computations.37 The usual pertur-
bative approach to the XXZ chain uses the Jordan-Wigner
transformation38 to produce an expansion in powers of �.
This is suitable for investigating the XY phase, ����1,
but inadequate here. Instead we first perform a
Kramers-Wannier39 duality transformation to a new Hamil-
tonian in terms of dual operators. A Jordan-Wigner transfor-
mation from these dual operators to spinless fermions then
leads to a controlled expansion in 1 /�. An equivalent map-
ping has been used previously, coupled with mean-field
theory, to find the approximate excitation spectrum in the
Ising phase.40 We take an alternative approach resumming
certain terms in the expansion to all orders in order to take
account of both quantum and thermal fluctuations.

The structure of the paper is as follows. First in Sec. II we
discuss symmetries of the Hamiltonian and the dynamical
structure factor. Second, in Sec. III we transform the Hamil-
tonian into a form suitable for the expansion. In Sec. IV we
describe the perturbative expansion of the transverse spin-
spin correlator. In Sec. V we explain how to resum certain
terms in this expansion in order to obtain finite results. In
Sec. VI we discuss the behavior of the dynamical structure
factor for a range of parameters. Section VIII contains some
brief concluding remarks.

II. SYMMETRIES OF THE HAMILTONIAN AND THE
STRUCTURE FACTOR

We now describe the symmetries of the Hamiltonian and
their consequences for spin-spin correlation functions. For
h=0 the Hamiltonian, Eq. �1�, is invariant under arbitrary
rotations Rz��� around the z axis as well as under rotations
by 	 around the x axis, Rx�	�, which entail the mapping

Sj
x → Sj

x,

Sj
y,z → − Sj

y,z.

The two types of symmetry operations do not commute, but
we can diagonalize the Hamiltonian simultaneously with ei-
ther Sz or with the generator Rx�	� of the Z2 symmetry. This
in turn implies that all off-diagonal spin correlators vanish
for T�0 by the following arguments. When considering the
thermal expectation values �Sn

aSm
z �, with a=x ,y, we choose a

basis of energy eigenstates in which the total Sz is diagonal.
Then carrying out a rotation by 	 around the z axis sends
Sn

a→−Sn
a, a=x ,y, and as a result

�Sn
aSm

z � = − �Sn
aSm

z � = 0, a = x,y . �2�

On the other hand, when considering �Sn
xSm

y � we use a basis
of simultaneous eigenstates of H and Rx�	� to carry out the
thermal trace. Under the Z2 symmetry the thermal expecta-
tion value is negated, leading to

�Sn
xSm

y � = − �Sn
xSm

y � = 0. �3�

This shows that in the absence of the transverse magnetic
field all off-diagonal elements of the dynamical structure fac-

tor vanish. In the presence of a finite transverse field we only
have the Z2 to work with. Concomitantly for h�0 one finds
�Sn

xSm
y �= �Sn

xSm
z �=0 but �Sn

ySm
z � is no longer required to vanish

by symmetry and as a result acquires a finite value.

III. TRANSFORMATIONS OF THE HAMILTONIAN

In order to proceed we aim to re-express the Hamiltonian
in terms of spinless fermions by means of a Jordan-Wigner
transformation in such a way that we analyze the resulting
interacting fermion Hamiltonian by standard perturbative
methods. In order to achieve this, the �J�nSn

zSn+1
z part of the

Hamiltonian �1� must be mapped to an expression quadratic
in fermions. One approach for doing this is outlined in Ap-
pendix A, another one is discussed in detail next. In the
following we consider a transverse magnetic field applied
along the x̂ direction. We note that the effects of a transverse
field in the critical region of the XXZ chain −1���1 have
been studied in some detail in Ref. 41.

A. Duality transformation

We work on the infinite chain so that we can ignore
boundary effects. The Hamiltonian, Eq. �1�, in terms of
Pauli-spin matrices is given by

H = H� + Hh,

H� =
J

4
��

n


n
z
n+1

z +
J

4�
n

�
n
x
n+1

x + 
n
y
n+1

y � ,

Hh =
h

2�
n


n
x . �4�

The Kramers-Wannier duality transformation is defined by

�n+1/2
x = 
n

z
n+1
z , �n+1/2

z = �
j�n+1


 j
x,

�n+1/2
y = − i�n+1/2

z �n+1/2
x . �5�

This transformation defines operators on a dual lattice and
maps an Ising chain from its ordered to its disordered
phase.42 Applying the transformation to the XXZ Hamil-
tonian we find

H� =
J

4�
n

���n+1/2
x + �n−1/2

z �n+3/2
z − �n+1/2

x �n−1/2
z �n+3/2

z � ,

Hh =
h

2�
n

�n−1/2
z �n+1/2

z . �6�

We note that applying the duality transformation to a finite
open chain leads to a dual Hamiltonian containing additional
boundary terms that in particular ensure a doubly-degenerate
ground state in the thermodynamic limit. This is most easily
seen for ��h�1, i.e., the Ising model in a transverse field.
In this limit the mapping gives
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��
n=1

N−1


n
z
n+1

z + h�
n=1

N


n
x

→ h�
n=1

N−1

�n+1/2
z �n+3/2

z + ��
n=1

N−1

�n+1/2
x + h�3/2

z . �7�

Now as h /�→0 the two ground states of the original Hamil-
tonian become the familiar Néel states, �
n

z�=−�
n+1
z �. In

contrast, for the dual Hamiltonian the ground state is given
by ��n+1/2

x �=−1 with n�N. The twofold degeneracy is then
maintained by the Nth dual spin, �N+1/2, which is free to
point in either direction. In the following we will be inter-
ested only in bulk correlations of operators that are local
under the duality transformation. Hence the boundary terms
do not play a role and will be dropped.

B. Fermionic representation

In order to proceed further it is necessary to map the spins
to fermions. We perform a rotation of spin axes about the �1,
1, 1� direction

�n+1/2
x → �n

z , �n+1/2
z → �n

y , �8�

with raising and lowering operators

�n
+ =

�n
x + i�n

y

2
, �n

− =
�n

x − i�n
y

2
, �9�

and then use the Jordan-Wigner transformation

�n
z = 2cn

†cn − 1,

�n
+ = cn

† exp�− i	� j�n
cj

†cj� . �10�

1. Spin operators

We first consider the transformation of the lattice spin
operators under the mappings. Crucially, the transverse spin
operator is local under the transformations


n
x = cn−1

† cn − cn−1
† cn

† + H.c. �11�

On the other hand, both 
z and 
y acquire Jordan-Wigner
strings. As a result, our formalism will allow us to determine
the xx component of the dynamical structure factor only. It
follows from the symmetry considerations above that in ab-
sence of a transverse magnetic field this suffices to determine
all transverse correlations.

2. Hamiltonian

After the Jordan-Wigner transformation the Hamiltonian
takes the form

H� =
J

2
��

n

cn
†cn +

J

2�
n

	cn−1
† cn+1 − cn−1

† cn+1
†

− cn−1
† cn

†cncn+1 + cn−1
† cn

†cncn+1
† + H.c.
 + const �12�

and

Hh =
h

2�
n

�cn−1
† cn − cn−1

† cn
† + H.c.� . �13�

We now write the Hamiltonian as a sum of two pieces, H
=H2+H4, containing quadratic and quartic terms in the fer-
mionic operators, respectively. The quartic �interaction�
terms are O��0� while the quadratic pieces mix orders O���
and O��0�. The external field only appears in the quadratic
part of the Hamiltonian. After taking the Fourier transform of
the quadratic part, H2, of the Hamiltonian we find

H2 =
J

8�
k

�ck
† c−k �� Ak iBk

− iBk − Ak
�� ck

c−k
† � , �14�

with Ak=2�+4 cos�2k�+ 4h
J cos�k� and Bk=4 sin�2k�

+ 4h
J sin�k�. This can be diagonalized by a Bogoliubov trans-

formation of the form

� ck

c−k
† � = �i cos�k� − sin�k�

sin�k� − i cos�k�
�� �k

�−k
† � , �15�

so that

H2 =
1

2�
k

��k
† �−k ���k 0

0 − �k
�� �k

�−k
† � , �16�

with tan�2k�=Bk /Ak and �k= J
4
Ak

2+Bk
2.

Now we consider the quartic part of the Hamiltonian

H4 = −
J

2�
n

�cn−1
† cn

†cncn+1 + cn−1
† cn

†cn+1
† cn + H.c.� . �17�

Taking the Fourier transform and manipulating indices leads
to

H4 = −
J

4N
�

k1,k2,k3,k4

�k1+k2+k3+k4
� f �k1k2��k3k4�ck1

† ck2

† c−k3
c−k4

+
2

3
�ig�k1k2k3�ck1

† ck2

† ck3

† c−k4
+ H.c.�� , �18�

where we have defined the new functions

f �k1,k2��k3,k4� = cos�k1 − k4� − cos�k2 − k4�

− cos�k1 − k3� + cos�k2 − k3� , �19�

g�k1,k2,k3� = sin�k1 − k2� + sin�k2 − k3� + sin�k3 − k1� .

�20�

The function f is antisymmetric under exchange of the two
momenta within a pair of brackets. The function g is sym-
metric for cyclic permutations of its momentum arguments
and antisymmetric otherwise. For example, f �k1,k2��k3,k4�=
−f �k2,k1��k3,k4�= f �k3,k4��k1,k2� and g�k1,k2,k3�=g�k2,k3,k1�=−g�k2,k1,k3�.
Performing the Bogoliubov transformation on H4 is standard
but lengthy. By manipulating indices under the sums we ar-
rive at a relatively compact form for the part quartic in Bo-
goliubov operators
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H4 =
1

N
�

1,2,3,4
�k1+k2+k3+k4,0�V0�k1,k2,k3,k4�	�k1

† �k2

† �k3

† �k4

†

+ H.c.
 + 	V1�k1,k2,k3,k4��k1

† �−k2
�−k3

�−k4
+ H.c.


+ V2�k1,k2,k3,k4��k1

† �k2

† �−k3
�−k4

� . �21�

The interaction vertices are given by

V0�k1,k2,k3,k4� =
J

96 �
P�S4

sgn�P�cos�kP�1� − kP�2� − kP�1�

+ kP�2�
+ kP�3�

− kP�4�
� , �22�

with permutation P acting on the set �1,2,3,4�,

V1�k1,k2,k3,k4� = i
J

12 �
P�S3

sgn�P�	sin�k1 − kP�2� − k1
+ kP�2�

+ kP�3�
− kP�4�

� − sin�kP�2� − kP�3� + k1

− kP�2�
+ kP�3�

− kP�4�
�
 , �23�

with permutation P acting on the set �2,3,4� and finally

V2�k1,k2,k3,k4� =
J

8� �
P�S3

sgn�P�cos�k3 − k4 − k3
+ k4

− kP�1�
+ kP�2�

� + �
P��S3

sgn�P��cos�k1 − k2

− k1
+ k2

− kP��3�
+ kP��4�

�

+ �
P�S3

�
P��S3

sgn�P�sgn�P��	cos�kP�1�

− kP��3� − kP�1�
+ kP�2�

+ kP��3�
− kP��4�

�

+ cos�kP�1� − kP��3� − kP�1�
− kP�2�

+ kP��3�

+ kP��4�
�
� , �24�

where P and P� act on �1,2� and �3,4�, respectively.
New quadratic terms are generated by normal ordering the

quartic piece. We must then include these with the original
terms from H2 and solve for k self-consistently so that the
off-diagonal terms are zero. This requirement may be recast
as a self-consistency condition for every k,

tan�2k� =

2 sin�2k� +
2h

J
sin�k� +

1

2N
�

q

�2�k,q�

� + 2 cos�2k� +
2h

J
cos�k� +

1

N
�

q

�1�k,q�
,

�25�

where we have defined

�1�k,q� = 2f �k,q��−k,−q� sin2�q� + g�k,q,−q� sin�2q� , �26�

�2�k,q� = f �k,−k��q,−q� sin�2q� − 4g�k,−k,q� sin2�q� . �27�

Clearly the dispersion is also affected by the new quadratic
parts becoming

�k = J���

2
+ cos�2k� +

h

J
cos�k� +

1

2N
�

q

�1�k,q��2

+ �sin�2k� +
h

J
sin�k� +

1

4N
�

q

�2�k,q��2�1/2
. �28�

Evaluating the self-consistency and dispersion relations 	Eqs.
�25� and �28�
 numerically we can compare the gap �i.e.,
lowest excitation energy� to the mean-field result found by
Gómez-Santos.40 Summing over 100 sites our results for the
physical �two-particle� gap are in excellent agreement. The
self-consistent Bogoliubov parameter is plotted in Fig. 1 for
a range of parameters. Figures 2 and 3 show that �k is an
excellent approximation to the spinon dispersion. It is also

0 π/2 π 3π/2 2π
k

-0.4

-0.2

0

0.2

0.4

θ(
k)

∆=10, h=0
∆=3, h=0
∆=10, h=J

FIG. 1. �Color online� The self-consistent Bogoliubov parameter
k for J=1. The parameter scales as �−1.

0 π/2 π 3π/2 2π
k

4

4.4

4.8

5.2

5.6

6

6.4

6.8

ε(
k)

∆=10, h=0
∆=10, h=1

FIG. 2. �Color online� The single-particle dispersion relation, �k

�with J=1�, for �=10. The dispersion calculated with and without
self-consistency �solid and dashed curves, respectively� and the ex-
act spinon dispersion �Refs. 26 and 28� �dotted curves� are shown.
The spinon result is not available in the case of a finite transverse
field. For h=0 the dispersion is nearly sinusoidal. Note the func-
tions are 	 periodic for h=0 and 2	 periodic otherwise.
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apparent that use of a self-consistent Bogoliubov parameter
is a small effect on the level of the dispersion, except in the
presence of a transverse field.

It is worth emphasizing that the fermions that feature in
the diagonalized quadratic Hamiltonian, Eq. �16�, are not the
same as the spinons of the exact treatment.26–28 Here fermion
number is not conserved by the interaction vertices. In con-
trast spinon number is conserved by the exact solution. In-
stead the fermions described by �k

† should be viewed as
propagating domain walls.

3. Properties of the eigenstates

Previously it has been suggested that the fundamental ex-
citations of Heisenberg-Ising chains are chiral.13 We now
make some remarks on this possibility, in light of our results.
The relevant chiral operator, Cx, is defined as

Cx = x̂ · �
n

Sn � Sn+1 = �
n

Sn
ySn+1

z − Sn
zSn+1

y . �29�

For chirality to be a good quantum number for the XXZ
chain, Cx must commute with the Hamiltonian. We find

	H,Cx
 = �
n

i�Sn−1
x − Sn

x + Sn+1
x − Sn+2

x ��Sn
ySn+1

y + Sn
zSn+1

z � ,

�30�

which is an O�1� contribution. A priori, this demonstrates
that at least one eigenstate of the Hamiltonian is not an
eigenstate of Cx. However it is possible to show that spinon
states are generally not chirality eigenstates. First we write
the commutator in the fermionic basis

	H,Cx
 = −
i

4�
n
�cn

†cn −
Mn−1,n+1

2
+ cn

†cnMn−1,n+1�
��Mn−2,n−1 − Mn−1,n + Mn,n+1 − Mn+1,n+2� ,

�31�

where we have defined

Mn,n+1 = cn
†cn+1

† + cncn+1 − cn
†cn+1 − cncn+1

† . �32�

As written, Eq. �31� contains only terms quartic and sextic in
the creation and annihilation operators. However once Fou-
rier transformed, rewritten in the Bogoliubov basis ��k

†�, and
normal ordered, quadratic terms will be generated. A true
�one-spinon� excitation of the system, ���, involves a super-
position of domain walls created by the �k

† operators. Sche-
matically

��� = �
i=1

N

�
k1,. . .,ki

li�k1, . . . ,ki��1−i�ki

† �0� . �33�

where the li�k1 , . . . ,ki� are c-number functions of the mo-
menta and we have written the small expansion parameter
�1−i explicitly. It has been shown that at lowest order the
excitations are eigenstates of the chirality operator.13 How-
ever from Eqs. �31� and �33� we see that the expectation
���	H ,Cx
��� will generally not be zero, instead having a
finite contribution at lower orders in �−1. As �→� these
contributions vanish and at the Ising point the excitations can
be chosen as chirality eigenstates.

IV. DYNAMICAL RESPONSE

The quantity of interest for inelastic neutron scattering is
the dynamical structure factor Sab�� ,Q� given by

Sab��,Q� =
1

N
�

−�

� dt

2	
�
l,l�

ei�te−iQ�l−l���Sl
a�t�Sl�

b � . �34�

Here Sl
a= 1

2
l
a is the a component of the spin operator at site

l. The structure factor is related to the retarded dynamical
susceptibility �R

ab�� ,Q�,

Sab��,Q� = −
1

	

1

1 − e−�� Im	�R
ab��,Q�
 , �35�

where

�R
ab��,Q� = ��

0

�

d�ei�n��ab��,Q���n→�−i�,

�ab��,Q� = −
1

N
�
l,l�

e−iQ�l−l���T�Sl
a���Sl�

b � . �36�

Here we have introduced the Matsubara formalism
and the expectation implies a thermal trace �¯ �
=Z−1�m�m�e−�H

¯ �m�.
Following the discussion in Sec. I it is apparent that for

h=0, �ab�� ,Q� and hence Sab�� ,Q� will be diagonal in the
indices a ,b but that this is no longer the case for h�0, in
agreement with experiment.13

A. Dynamical structure factor in the fermionic representation

As previously discussed, the Jordan-Wigner transforma-
tion introduces nonlocal “strings” which make calculating
�zz complicated. We instead focus our attention on the trans-
verse susceptibility, �xx.

0 π/2 π 3π/2 2π
k

0.5

1

1.5

2

2.5

ε(
k)

∆=3, h=0

FIG. 3. �Color online� The single-particle dispersion relation, �k

�with J=1�, for �=3. The dispersion calculated with and without
self-consistency �solid and dashed curves, respectively� and the ex-
act spinon dispersion �Refs. 26 and 28� �dotted curves� are shown.
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First the required spin operator must be written in terms
of the new fermionic operators


Q
x =

1
N

�
k

ei�Q/2�	2 cos�k − k − k+Q + Q/2��k
†�k+Q

− i sin�k − k − k+Q + Q/2���k
†�−k−Q

† − �−k�k+Q�
 . �37�

We will use Eq. �37� to evaluate the time-ordered dynamical
susceptibility

�xx��,Q� = −
1

4
�T�
Q

x ���
−Q
x � . �38�

As we aim to calculate Eq. �38� in perturbation theory in H4
we now switch to the interaction picture. In order to simplify
the perturbative calculation of �xx it is useful to express Eq.
�38� in terms of a 3�3 matrix ����� ,Q �k ,k�� �the matrix
indices take values � ,�=1,2 ,3� as follows:

�xx��,Q� =
1

N2 �
k,k�

L��k������,Q�k,k��L�
†�k�� , �39�

where

L��k� = � i

2
sin��k�, cos��k�, −

i

2
sin��k��

�

, �40�

�k = k + Q/2 − k − k+Q, �41�

and the 3�3 matrix ����� ,Q �k ,k�� is given by

�����,Q�k,q� = − �T�X����,Q�k�X��
† �0,Q�q�U���� ,

�42�

X����,Q�k� = ��−k�k+Q 0 0

0 �k
†�k+Q 0

0 0 �k
†�−k−Q

† �
��

. �43�

The imaginary time-evolution operator in the interaction pic-
ture is

U��� = T� exp�− �
0

�

d�1H4��1�� . �44�

The Fourier transform of the matrix � is given by

��i�n,Q�k,q� = �
0

�

d�ei�n����,Q�k,q� . �45�

B. Zeroth order

At zeroth order in perturbation theory we replace U��� in
Eq. �42� by 1. All off-diagonal elements then vanish and we
find ��nm=�n−�m�,

�11
0 �i�n,Q�k,q� =

1

�
�
i�m

G0�i�nm,k + Q�G0�i�m,− k�	�k,−q−Q

− �k,q
 =
nk + nk+Q − 1

i�n − �k − �k+Q
	�k,−q−Q − �k,q
 ,

�46�

�22
0 �i�n,Q�k,q� =

1

�
�
i�m

G0�i�m,k + Q�G0�− i�nm,k��k,q

=
nk − nk+Q

i�n + �k − �k+Q
�k,q, �47�

�33
0 �i�n,Q�k,q� =

1

�
�
ikn

G0�− i�nm,− k − Q�G0�− i�m,k�

�	�k,−q−Q − �k,q
 =
nk + nk+Q − 1

i�n + �k + �k+Q
	�k,q

− �k,−q−Q
 . �48�

Here nk=1 / �e��k +1� and the bare Green’s function is given
by

G0�ikn,k� =
1

ikn − �k
. �49�

The dynamical susceptibility at zeroth order in perturbation
theory is then obtained by substituting the matrix �0 into Eq.
�39� and carrying out the momentum sums. Taking the ther-
modynamic limit and analytically continuing to real frequen-
cies, i�n→�+ i�, we arrive at the following expression for
the zeroth-order retarded susceptibility:

�R,0
xx ��,Q� = − �

−	

	 dk

8	
��1 − cos	2k + Q − 2�k + k+Q�
�

�� nk + nk+Q − 1

� + i� − �k − �k+Q
+

1 − nk − nk+Q

� + i� + �k + �k+Q
�

− 2�1 + cos	2k + Q − 2�k

+ k+Q�
�
nk+Q − nk

� + i� − �k + �k+Q
� . �50�

The remaining k integral cannot be carried out analytically in
general as the Bogoliubov parameters k need to be deter-
mined self-consistently and are therefore only known implic-
itly. However, in the limit �→� the integral can be taken
and simple expressions for �R,0

xx �� ,Q� may be obtained.
In order to evaluate the susceptibility further we take h

=0 and expand �k as a series in 1 /�. This gives

�k =
J�

2
+ J cos�2k� +

J

�
sin�2k� + ¯ , �51�

�k+Q + �k = J	� + 2 cos�2k + Q�cos�Q�
 + ¯ , �52�

�k+Q − �k = − 2J sin�2k + Q�sin�Q� + ¯ . �53�

We see that poles occur at

� = 2J sin�2k0 + Q�sin�Q� , �54�

� = J	� + 2 cos�2k− + Q�cos�Q�
 , �55�

� = − J	� + 2 cos�2k+ + Q�cos�Q�
 . �56�

The contribution from k only enters at O� 1
� � so we neglect

it. We wish to take the imaginary part of the retarded suscep-
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tibility as this is proportional to the dynamical structure fac-
tor. Defining

P��,E� = ���E� + �����E� − �� = �0 if ��� � �E�
1 if ��� � �E� ,�

�57�

where the �’s are Heaviside step functions, we find

− Im �R,0
xx �Q,��

� 	1 + cos�2k0 + Q�

�nk0+Q − nk0

�P	�,2J sin�Q�


16J�cos�2k0 + Q�sin�Q��

−
1

2
	1 − cos�2k+ + Q�


�nk++Q + nk+
− 1�

16J�sin�2k+ + Q�cos�Q��

�P	� + �J,2J cos�Q�


+
1

2
	1 − cos�2k− + Q�


�nk−+Q + nk−
− 1�

16J�sin�2k− + Q�cos�Q��

�P	� − �J,2J cos�Q�
 , �58�

with

2k0 + Q = arcsin� �

2J sin�Q�� , �59�

2k+ + Q = arccos�−
1

2 cos�Q���

J
+ ��� , �60�

2k− + Q = arccos� 1

2 cos�Q���

J
− ��� . �61�

Using the expansion of �k one can also show that at next to
leading order

nk0+Q − nk0
=

sinh�1

2
���P	�,2J sin�Q�


cosh�1

2
��� + cosh��

2
J� −

�

2
cot�Q��	2J sin�Q�
2 − �2�1/2� ,

nk�+Q + nk�
− 1 = −

cosh�1

2
���P	� � J�,2J cos�Q�


cosh�1

2
��� + cosh��

2
tan�Q��	2J cos�Q�
2 − �� � J��2�1/2� . �62�

Inserting these relations into the full expression yields

− Im �R,0
xx �Q,�� �

1

8
� 1

�	2J sin�Q�
2 − �2�1/2 −
1

2J sin�Q��
sinh�1

2
���P	�,2J sin�Q�


cosh�1

2
��� + cosh��

2
J� −

�

2
cot�Q��	2J sin�Q�
2 − �2�1/2�

+
1

32J cos�Q��2J cos�Q� + �� + J��
2J cos�Q� − �� + J���1/2 cosh�1

2
���P	� + J�,J cos�Q�


cosh�1

2
��� + cosh��

2
tan�Q��	2J cos�Q�
2 − �� + J��2�1/2�

−
1

32J cos�Q��2J cos�Q� − �� − J��
2J cos�Q� + �� − J���1/2 cosh�1

2
���P	� − J�,2J cos�Q�


cosh�1

2
��� + cosh��

2
tan�Q��	2J cos�Q�
2 − �� − J��2�1/2� .

�63�

This analysis shows that, at zeroth order, the response diverges as an inverse square root both for �= � 	�J−2J cos�Q�
 and
�= �2J sin�Q�. These divergences are associated with the gapped two-spinon response and the thermally activated Villain
mode, respectively. In fact these expressions bear some resemblance to results for the XYchain.21,43 This is not surprising as to
zeroth order the transverse correlator probes the dynamics of a pair of free fermions, as does �zz for the XY chain.
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C. First-order perturbation theory

At first order two classes of contributions appear, which
may be distinguished by considering their diagrammatic rep-
resentation. As we have already seen, the three zeroth-order
diagrams take the form of bubbles. The first class of dia-
grams in first order consists of two bubbles connected by an
interaction vertex. The second class of diagrams consists of a
single bubble with a self-energy insertion. We detail these
contributions in Appendix B. An important feature is that
several of the first-order contributions have stronger singu-
larities as functions of the external frequency and momentum
than the zeroth-order results. This indicates that it is neces-
sary for the expansion to be resummed before useful physical
results can be extracted.

V. BUBBLE SUMMATION

We have shown that at zeroth order the susceptibility di-
verges for certain � and Q and that this is matched by stron-
ger divergences in some of the first-order terms �see Appen-
dix B�. Moreover, it is clear from the first-order calculation
that higher orders in perturbation theory will exhibit stronger
and stronger divergences. In order to get physically meaning-
ful results we therefore should sum the most divergent
classes of diagrams. In the case at hand, the complicated
momenta dependence of the vertices and the self-consistent
Bogoliubov transformation makes the determination of the
most divergent contributions an impossible task. Instead we
resum just the connected bubble diagrams and justify our
choice by comparing results to the exact T=0 calculation.
We explain how to incorporate self-energy corrections in
Sec. V D.

A. Random-phase approximation–like scheme

The random-phase approximation �RPA� scheme consists
of carrying out bubble sums of the type shown in Fig. 4. To
carry out these summations is nontrivial as the lines in the
internal bubbles can take any orientation and the momentum
dependence of the vertices is very complicated. In order to
proceed we organize the interaction vertices into a 3�3 ma-
trix

V11�Q�k,q� = V2�k + Q,− k,q,− q − Q� ,

V12�Q�k,q� = − 3V1�q + Q,− q,k,− k − Q� ,

V13�Q�k,q� = 6V0�k + Q,− k,q,− q − Q� ,

V21�Q�k,q� = 3V1�k + Q,− k,q,− q − Q� ,

V22�Q�k,q� = − 4V2�k + Q,q,− k,− q − Q� ,

V23�Q�k,q� = − 3V1�k,q + Q,− q,− k − Q� ,

V31�Q�k,q� = 6V0�q + Q,− q,k,− k − Q� ,

V32�Q�k,q� = 3V1�q,k + Q,− k,− q − Q� ,

V33�Q�k,q� = V2�q,− q − Q,k + Q,− k� . �64�

As is shown in Appendix C, in the thermodynamic limit the
RPA-like bubble summation without taking into account self-
energy corrections results in an integral equation of the form

���
RPA�i�n,Q�k,k�� = ���

0 �i�n,Q�k,k��

+� dq

2	
K���i�n,Q�k,q����

RPA�i�n,Q�q,k�� ,

�65�

where the kernel K is defined as the infinite volume limit of

K���i�n,Q�k,q� = �
k�

���
0 �i�n,Q�k,k��V���Q�k�,q� .

�66�

Defining a convolution � by
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FIG. 5. �Color online� The dynamical structure factor as found
by resummation, the exact result �Refs. 26 and 28�, and the calcu-
lation of Ishimura and Shiba �Ref. 24� �IS� at T=0, Q=0, and �
=10. In all cases the curves are convolved with a Gaussian in fre-
quency space of full width at half maximum 0.12.
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FIG. 4. Bubble summation for one contribution to the dynamical
susceptibility matrix �xx�i�n ,Q�. Thick lines indicate that the
single-particle propagators may be resummed to include self-energy
corrections.
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�X � Y����i�n,Q,k,k��

� �
−	

	 dq

2	
X���i�n,Q�k,q�Y���i�n,Q�q,k�� , �67�

this can be rewritten as

�I − K� � �RPA = �0. �68�

The integral Eq. �68� is then readily solved

�RPA = �I − K�−1 � �0. �69�

After analytic continuation to real frequencies i�n→�+ i�
the quantity of interest is calculated as

�
−	

	 dkdq

�2	�2L��k����
RPA�� + i�,Q�k,q�L�

†�q� . �70�

In practice the solution of the integral equation discussed
above is reduced to a simple matrix inversion problem. We
discretize all momentum integrals in terms of sums over N
=400 points. We find that this value is large enough to make
discretization effects negligible. We set J=1 and the regula-
tor �=10−3. The discretized representation of I−�0�V
�which is a matrix both in momentum space as well as in the
3�3 matrix space labeled by Greek indices� may be found
using standard linear algebra routines. The dynamical struc-
ture factor is then evaluated at 24 000 points in frequency
space. Using a finite system size results in a finite number of
poles in the susceptibility �36�. In turn, because � is finite,
the calculated structure factor will be composed of a number
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Q=π/4, ∆=10, T=0

FIG. 6. �Color online� The dynamical structure factor as found
by resummation, the exact result �Refs. 26 and 28�, and the calcu-
lation of IS �Ref. 24� at T=0, Q=	 /4, and �=10. In all cases the
curves are convolved with a Gaussian in frequency space of full
width at half maximum 0.12.
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FIG. 7. �Color online� The dynamical structure factor as found
by resummation, the exact result �Refs. 26 and 28�, and the calcu-
lation of IS �Ref. 24� at T=0, Q=	, and �=10. In all cases the
curves are convolved with a Gaussian in frequency space of full
width at half maximum 0.12.
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FIG. 8. �Color online� A comparison of our calculation and the
exact result �Refs. 26 and 28� for Q=	 /2 at T=0 and �=10. Left
panel: 	 /2 curves convolved with a Gaussian �width 0.08� plotted
with the exact result at Q=0, in order to demonstrate the scale.
Right panel: the same 	 /2 curves but plotted at a different scale. At
Q=	 /2 the result of Ishimura and Shiba is undefined as the de-
nominator goes to zero �Ref. 24�.
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FIG. 9. �Color online� The dispersion Ek, including tadpole self-
energy corrections for �=10. Left panel shows the gradual narrow-
ing of the bandwidth with temperature. At this scale the dispersion
for T=J is indistinguishable from that for T=0. Right panel shows
the two distinct elements of the self-energy matrix, �sp at T=2J.
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�N of Lorentzian peaks of width �. Finally we convolve this
result with a suitable Gaussian.

B. Comparison to exact results for T=0

Given the uncontrolled nature of our bubble summation it
is essential to compare it to exact results at zero
temperature26,28 in order to assess its quality. In Figs. 5–8 we
plot our results against the exact results for the dynamical
structure factor for �=10, T=0, and several momenta. We
also include for comparison an earlier result for the DSF due
to Ishimura and Shiba.24 We see that for �=10, T=0, and at
most wave vectors the resummation is a highly accurate ap-
proximation. This suggests that the diagrams we have se-
lected account for most of the spectral weight at low tem-
perature. It is known from the exact result26,28 that the
gapped response diverges along its lower energy threshold,
in a region of momentum centered about 	 /2 �the size of
which increases as �→1�. Correspondingly the resummation
is less accurate near 	 /2, although there is still qualitative
agreement �Fig. 8�. For larger values of � our approximation
becomes even better.

C. Analytical resummation for T=0

It is possible and instructive to evaluate the resummation
exactly in the limit T=0, �→�. At zeroth order, positive
frequencies, and T=0, the only nonzero diagram is the
particle-particle propagation bubble. This diagram leads to a
response in the region ���J. As T→0 the thermal occupa-
tion factors vanish and by expanding in 1 /� we find

k = O��−1� , �71�

so that we can neglect the Bogoliubov phases. The diagram
then reduces to

� dk

4	

sin2�k + Q/2�
i�n − �k − �k+Q

= A�i�n,Q� . �72�

Using the approximation

�k + �k+Q � �J + 2J cos�Q�cos�2k + Q� ,

we have

A�i�n,Q� = �
−	

	 dk

4	

sin2�k + Q/2�
i�n − �k − �k+Q

=
1

4J cos�Q��0

	 dk

2	

1 − cos�2k + Q�
�̃ − cos�2k + Q�

and �̃=
i�n−�J

2J cos�Q� . The remaining integral can be taken by stan-
dard contour integration methods and analytic continuation
to real frequencies is then straightforward. With the approxi-
mations made here the vertex V2 takes a particularly simple
form and resummation amounts to the geometric series

− Im	�xx��,Q�
 = − Im	A��,Q� + 4J cos�Q�A��,Q�2

+ �4J�2cos2�Q�A��,Q�3 + ¯


= − Im� A��,Q�
1 − 4J cos�Q�A��,Q�� . �73�

Finally the T=0 result, to lowest order in �, is

− Im	�xx��,Q�
 = �	2J cos�Q�
2 − �� − �J�2

8J2 cos2�Q�
�� − �J� � �2J cos�Q��

0 otherwise.
� �74�

Ishimura and Shiba calculated the DSF at T=0 using a
method based on perturbation theory combined with a Leh-
mann representation.24 The expression obtained here �74�
agrees to lowest order with their result.

D. One-loop self-energy corrections

As they stand, the first-order tadpole contributions, Eqs.
�B10�–�B16�, cannot be incorporated into the RPA. This is
because they contain divergences which are not resummed
according to the scheme above. Instead we must first calcu-
late a new single-particle Green’s function using a Dyson
equation to resum the tadpole self-energy corrections. This
Green’s function is then used to calculate a new bubble dia-
gram.

Including the tadpole corrections generates anomalous
propagators at higher orders. These are most efficiently taken
into account by formulating the propagator as a matrix

g�i�n,k� = − �
0

�

d�ei�n�g��,k� ,

g��,k� =�T�� �k����k
†�0� �k����−k�0�

�−k
† ����k

†�0� �−k
† ����−k�0�

�U��,0�� .

�75�

At zeroth order the result is

g0�i�n,k� = �G0�i�n,k� 0

0 − G0�− i�n,− k�
� . �76�

The single-particle self-energy is defined by the Dyson equa-
tion
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g−1�i�n,k� = g0
−1�i�n,k� − ��i�n,k� . �77�

If only “tadpole”-type diagrams are included the self-energy
is, to first order in perturbation theory, frequency indepen-
dent

� = �
p

np

N
�4V2�k,p,− p,− k� − 3V1�p,− p,k,− k�

3V1�p,− p,k,− k� − 4V2�k,p,− p,− k�
� .

�78�

The elements of the matrix are O�nk�
0� and hence their ef-

fects will be most pronounced when the gap is small or the
temperature is large.

Using the relations

g0
11�i�n,k� =

1

i�n − �k
, �79�

g0
22�i�n,k� =

1

i�n + �k
, �80�

�21 = ��12�� = − �12, �81�

�11 = − �22, �82�

one finds that

g�i�n,k� =
1

�i�n�2 − ��k + �11�2 − ��12�2
�i�n + �k + �11 − �12

�12 i�n − �k − �11� .

We rewrite this as

g11�i�n,k� = � Zk
−

i�n − Ek
+

Zk
+

i�n + Ek
� , �83�

g22�i�n,k� = � Zk
−

i�n + Ek
+

Zk
+

i�n − Ek
� , �84�

g12�i�n,k� = �k� 1

i�n + Ek
−

1

i�n − Ek
� , �85�

g21�i�n,k� = − g12�i�n,k� , �86�

with the definitions

Ek = ��k + �11�2 + ��12�2, �87�

Zk
� =

1

2
�1 �

�k + �11

Ek
�, �k =

�12

2Ek
. �88�

E. Bubble summation with self-energy corrections

The one-loop self-energy corrections to the propagators
can be taken into account in the bubble summation for the
dynamical susceptibility as follows. We define a 3�3 matrix
�S by

���
S ��,Q�k,q� = − �T�X����,Q�k�X��

† �0,Q�q�U�����1−loop �,

�89�

where only one-loop self-energy corrections are taken into
account. This amounts to calculating the two-point function
of X and X† using the �anomalous� propagators �82�. The
elements of �S are listed in Appendix D. We now follow the
same steps as in Appendix C and show that summing all
bubble diagrams of the form shown in Fig. 4 gives rise to an

integral equation obtained from Eq. �65� by the replacement
���

0 →���
S , i.e.,

���
RPA�i�n,Q�k,k�� = ���

S �i�n,Q�k,k��

+� dq

2	
K��

S �i�n,Q�k,q����
RPA�i�n,Q�q,k�� ,

�90�

where the kernel KS is defined as the infinite volume limit of

K��
S �i�n,Q�k,q� = �

k�

���
S �i�n,Q�k,k��V���Q�k�,q� .

�91�

At T=0 the one-loop corrections to � vanish, so that we
recover our previous result. On the other hand, for T�0, �
plays an important role, altering the dispersion and shifting
the thresholds of the dynamical response �see Fig. 9�.

One can also calculate the two-loop corrections to the
single-particle propagator but it is not as simple to incorpo-
rate them into the RPA. For reference they are included in
Appendix E.

VI. RESULTS AND DISCUSSION

We now turn to a discussion of our results at finite tem-
peratures and applied fields. For the perturbative expansion
to be valid we require ��1. In selecting diagrams to resum
we have favored those that are most relevant at low tempera-
tures, i.e., those that feature few thermal occupation factors.
The relevant energy scale is the single-particle gap ��J /2,
so we restrict our discussion to temperatures T��J /2. We
calculate the transverse dynamical structure factor as de-
scribed in Sec. V A using the matrix �S found in Sec. V D
and setting �=10 and J=1. For ��1 the dynamical struc-
ture factor �at positive frequency� consists of two pieces: a
gapped continuum response occurring at frequencies ���
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and a response for ��0 that is only seen at finite tempera-
ture.

On general grounds one expects that at finite temperature
the very sharp thresholds seen at T=0 should disappear. In
our approach the thresholds are still present although they
are obfuscated by the necessity of convolving the response
with a Gaussian. This is a consequence of the diagrams we
have taken into account. We expect this “thermal broaden-
ing” to be a small effect that could be taken into account by
including certain two-loop diagrams. These two-loop dia-
grams connect the response to decay channels of higher par-
ticle number. We discuss the issue further in Appendix E.

A. Gapped response for h=0

We first consider the gapped �interband� response at finite
temperatures and for h=0. At T=0 the transverse DSF is
dominated by a two-spinon scattering continuum that occurs
at energies around twice the single-particle gap, i.e., �
��J. In Figs. 10–12 we show how the DSF in this regime of
energies changes at finite temperature. The most striking fea-
ture is a narrowing of the response with increasing tempera-
ture. This is in agreement with inelastic neutron-scattering
experiments on TlCoCl3.11 Another notable feature at T=0 is

that the response is not symmetric about Q=	 /2.26 As can
be seen in Figs. 5–7 our calculation captures this behavior.
Accordingly the response develops asymmetrically with tem-
perature and in a nontrivial way. In particular the maximum
of the response for 0�Q�	 /2 moves to lower frequencies
as temperature increases, but is shifted to higher frequencies
for 	 /2�Q�	.

For all wave vectors the total spectral weight in the
gapped region decreases as temperature increases. The
thresholds of the response shift as temperature increases due
to the thermal dependence of the single-particle dispersion
Ek, Eq. �87�. This depletion of spectral weight is physically
sensible because the excitations are fermionic; as tempera-
ture increases more states are thermally occupied and con-
comitantly there are fewer states for the new pair of fermions
to fill.

B. Villain mode for h=0

At temperatures greater than zero there is a thermal popu-
lation of spin excitations. Neutron scattering can then lead to
processes that do not change the spinon number of a given
microstate, thus giving rise to an intraband response at low
energies, ��0. Dynamics of this kind were first described
by Villain for the case of an finite length chain with an odd
number of sites.15 As such processes rely on states being
thermally occupied; their contribution to the DSF grows with
temperature. The principle feature of the response is a well-
defined resonance or “mode” at �=2J sin�Q�.8,9,15 At lowest
order in our calculation the intraband response exhibits a
square-root divergence �Sec. IV B�. Taking interactions into
account by our bubble summation leads to a smoothing of
the divergence, which however occurs in a very small region
in energy close to the threshold. This means that the zeroth
order �especially when convolved with an experimental res-
olution� is an excellent approximation to the resummed re-
sult.

The intraband response is also asymmetric about Q
=	 /2 �see Fig. 13�. For 0�Q�	 /2 the response between
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FIG. 10. �Color online� The dynamical structure factor at finite
temperature for ��� and �=10 at wave vector Q=0.
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temperature for ��� and �=10 at wave vector Q=	.
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the peaks is suppressed relative to that at Q=	 /2. For 	 /2
�Q�	 it is enhanced.

C. Response in a transverse field

The transverse field h only enters the quadratic part of the
Hamiltonian �16�, hence its influence on the scattering re-
sponse is through the single-particle dispersion and not the
interaction vertices. The first property to take into consider-
ation is that h will have an effect on the excitation gap. As
the magnitude of the field h approaches �J the gap collapses
and the perturbative expansion is inapplicable. Hence we
consider a field small compared to �J. For fields h��J the
gap opens again with the chain ferromagnetically ordered. A
second important feature to note is that a nonzero h causes
the period of Ek to double �see Fig. 1�: the maximum at k
= �2n+1�	 is reduced relative to those at k=2n	. This leads
to the double-peaked structure seen at Q=	 /2 in the gapped
response �Figs. 14 and 15� and throughout the low energy
scattering �Fig. 16�. This splitting of the Villain mode peaks
was observed by Braun et al.13

The asymmetry of the response about Q=	 /2 is further
increased by the transverse field. In particular, though the
exact result at T=0 �Refs. 26 and 28� and �=10 shows that
the energy thresholds of the gapped response are very nearly
symmetric about 	 /2, this is no longer the case in a finite
field. Instead the upper threshold near Q=0 is pushed to
higher energies but is relatively unchanged near Q=	. We
also note that the narrowing in energy of the response near
Q=	 /2 is suppressed relative to h=0. Asymmetry is also
seen in the thresholds of the low energy response �Fig. 16�.

VII. COMPARISON TO DIAGONALIZATION OF SHORT
CHAINS AT T�0

As we have seen above, at zero temperature our approach
gives good agreement with the exact DSF. In order to assess
the quality of our approximate DSF at finite temperatures,
we have computed the DSF by means of numerical diago-
nalization of the Hamiltonian on finite periodic chains of up

to 16 sites. The dynamical susceptibility �36� is expressed by
means of a Lehmann expansion in terms of Hamiltonian
eigenstates �n� of energy En as

�xx��,Q� = N�
n,m

e−�En − e−�Em

� + i� + En − Em
�Q+pn,pm

�n�S0
x�m��m�S0

x�n� ,

�92�

where the sums are taken over the eigenbasis of H. For a
sufficiently small system the eigenstates can be calculated
numerically. Due to the exponential increase in the dimen-
sion of the Hilbert space with the number of sites the method
is restricted to short chains. We consider systems with N
�16. In order to approximate the thermodynamic spectrum
from a finite number of allowed transitions, we take the pa-
rameter � in Eq. �92� to be sufficiently large so that the finite
sum of Lorentzians in Eq. �92� becomes a smooth function of
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FIG. 13. �Color online� The dynamical structure factor for �
�0 and �=10. Main plot: the Villain mode for a range of wave
vectors. Inset: the development of the Villain mode at Q=	 /2 with
temperature.
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�the real part of the� frequency. Clearly this procedure can
give a meaningful approximation of the susceptibility in the
thermodynamic limit only if � is very small in comparison to
the thermal broadening. Hence the method is restricted to
sufficiently large temperatures. In order to obtain a measure
of the importance of finite-size effects we calculate the DSF
for system sizes N=8, 12, and 16. We find that the finite-size
effects depend strongly on which region of energy and the
momentum we consider.

In Figs. 17–20 we compare the dynamical structure factor
calculated for a 16-site chain to the results obtained by our
perturbative approach for several values of momentum. For
Q=0, 	, and T=2J �Figs. 17 and 18� the agreement of the
two methods is good. The difference at very small frequen-
cies is probably due to finite-size effects in the exact diago-
nalization results. The finite-size effects for the main peak
are found to be quite small.

At Q=	 /2 and T=2J �Fig. 19� the agreement of the two
methods is less impressive. The disagreement at high fre-

quencies is likely due to inaccuracy of the bubble summation
in our perturbative method �we recall that the agreement of
our resummation with the exact result at T=0 was worst for
Q=	 /2�. On the other hand, the exact diagonalization results
are found to still suffer from finite-size effects at small fre-
quencies.

VIII. CONCLUSIONS

We have calculated the transverse dynamical structure
factor of the XXZ spin chain at finite temperature and applied
field. The perturbative method we use is accurate at low
temperatures and for large ��10. In this case the chain is in
the Ising phase and the excitations are descended from
propagating domain walls. The scattering response is com-
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FIG. 16. �Color online� Wave vector dependence of the Villain
mode for �=10 at h=J /2, T=J. Main panel shows wave vectors
Q=	 /4, 	 /2, and 3	 /4. Inset shows the response at Q=	 /2 for
h=0 and h=J /2.
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FIG. 17. �Color online� Comparison of the dynamical structure
factor obtained from the perturbative approach to exact diagonal-
ization on a 16-site chain with �=0.5J for T=2J at momentum Q
=0. In order to facilitate a comparison the perturbative result has
been convolved with a Lorentzian of width �.
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factor obtained from the perturbative approach to exact diagonal-
ization on a 16-site chain with �=0.5J for T=2J at momentum Q
=	. In order to facilitate a comparison the perturbative result has
been convolved with a Lorentzian of width �.
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posed of two distinct parts for ��10, namely, a gapped
continuum at ���J and the Villain mode at ��0. Our
results pertain to the low temperature and field dependence
of both. Our main observations are:

�1� The response associated with the gapped two-spinon
continuum at T=0 narrows in energy as temperature is in-
creased and loses spectral weight to the emerging low-
frequency Villain mode.

�2� The position of the peak �as a function of frequency�
of the high-frequency �gapped� continuum at T�0 becomes
asymmetric about Q=	 /2 as temperature increases.

�3� The thermally activated response at low frequencies
��0 is asymmetric about Q=	 /2.

�4� The Villain mode splits into two peaks in a transverse
field.

The main advantage of our method compared to previous
theoretical approaches lies in the fact that it is not restricted
to asymptotically large values of � and treats the Villain
mode and the gapped response in a unified way, which al-
lows us to determine the ratio of spectral weights between
these two features. Our results are in qualitative agreement
with inelastic neutron-scattering experiments.8,9,11,13 It would
be interesting to perform quantitative comparisons with po-
larized neutron-scattering data.
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APPENDIX A: DIRECT JORDAN-WIGNER
TRANSFORMATION OF THE HAMILTONIAN

We may write the Hamiltonian �1� as H=H0+H1, where

H0 =
J

4�
n

�
n
z
n+1

z + 
n
y
n+1

y +
h

2�
n


n
x ,

H1 =
J

4�
n


n
x
n+1

x , �A1�

where H0 can then be expressed as a quadratic form in spin-
less fermions by means of the Jordan-Wigner transformation


n
x = 2cn

†cn − 1,


n
z − i
n

y

2
= − cn

† exp�− i	� j�n
cj

†cj� . �A2�

The full Hamiltonian takes the form

H = �
n

J

4
�� + 1�	cn

†cn+1 + H.c.
 +
h − J

2
cn

†cn

+
J

4�
n

�� − 1�	cn
†cn+1

† + H.c.
 +
J

4�
n

cn
†cncn+1

† cn+1. �A3�

The quadratic terms in fermions can be diagonalized by a
Bogoliubov transformation �15�. The resulting free-fermion
dispersion is different from Eq. �16�. Expressing the interac-
tion part in terms of Bogoliubov fermions and normal order-
ing self-consistently leads to a theory of the same structure as
the one derived in Sec. III. In fact we expect it to be identi-
cal, but we have not verified this.

APPENDIX B: ONE-VERTEX DIAGRAMS

In this section we list the first-order contributions to the
transverse response and discuss their divergent behavior.

1. Connected bubble diagrams

The contributions to Li
k�ij

kq�� ,Q�Rj
q given by connecting

two bubbles are �the box vertices in the diagrams indicate the
inclusion of the external factors, Li

k and Rj
q�

=
1

N2�
k,q

sin��k�sin��q�V2�− k,k + Q,q,− q − Q�
nk + nk+Q − 1

i�n − �k − �k+Q

nq + nq+Q − 1

i�n − �q − �q+Q
,

�B1�

=
1

N2�
k,q

sin��k�sin��q�V2�q,− q − Q,− k,k + Q�
nk + nk+Q − 1

i�n + �k + �k+Q

nq + nq+Q − 1

i�n + �q + �q+Q
,

�B2�
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=
4

N2�
k,q

cos��k�cos��q�V2�k + Q,q,− k,− q − Q�
nk − nk+Q

i�n + �k − �k+Q

nq − nq+Q

i�n + �q − �q+Q
,

�B3�

=
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N2�
k,q

sin��k�sin��q�V0�− k,k + Q,q,− q − Q�
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i�n + �k + �k+Q

nq + nq+Q − 1

i�n − �q − �q+Q
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�B4�

=
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N2�
k,q

sin��k�sin��q�V0�− k,k + Q,q,− q − Q�
nk + nk+Q − 1
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nq + nq+Q − 1

i�n + �q + �q+Q
,

�B5�

=
6

N2�
k,q

sin��k�sin��q�V0�− k,k + Q,q,− q − Q�
nk + nk+Q − 1

i�n − �k − �k+Q
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i�n + �q + �q+Q
,
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sin��k�cos��q�iV1�− q,q + Q,− k − Q,k�
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,
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3
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�B9�

2. Tadpole-type diagrams

These contributions consist of bubbles in which one of the propagators features a tadpole type self-energy interaction

[
+

]
=

8

N2�
k,q

�cos�2�k� − 1�
nqV2�− k,q,− q,k�

i�n − �k − �k+Q
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�B10�

[
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�cos�2�k�

+ 1�
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[ ]
=

3

N2�
k,q

sin�2�k�iV1�q,− q,− k,k�
nq

i�n − �k − �k+Q
� nk − nk+Q

i�n + �k − �k+Q
−

2n��k� − 1

2�k
� ,

�B15�

[ ]
=−

3

N2�
k,q

sin�2�k�iV1�q,− q,− k,k�
nq

i�n − �k + �k+Q
� nk + nk+Q − 1

i�n + �k + �k+Q
−

2n��k� − 1

2�k
� .

�B16�

One expects that, just as at zeroth order, these diagrams will
have divergences at certain energies. Inspection of the pole
structure of the connected bubble diagrams 	Eqs. �B1�–�B9�

suggests that they will have stronger divergences than the
zeroth order because they feature products of poles. Numeri-
cal results support this assumption for Eqs. �B1� and �B2�.
On the other hand, it is clear that Eqs. �B4�–�B9� will be very
small �for large �� because they contain products of terms
that, individually, are only significant for different discrete
regions in �. The behavior of Eq. �B3� is subtler. This dia-
gram gives the most significant first-order contribution to the
response at ��0. However it does not contain a stronger
divergence than its zeroth-order equivalent. The reason is as
follows. Consider the sum

�
k

I�k,Q�
� + �k − �k+Q + i�

, �B17�

with I�k ,Q� an analytic function of k ,Q. As shown at zeroth
order, because the dispersion �k is bounded, the imaginary
part of the sum �as �→0� will in turn be bounded. In general
there is a divergence at the threshold �=max��k−�k+Q� of the
corresponding response. Naively one then expects that in the
double sum

�
k,q

I�k,Q�I�q,Q�I��k,q,Q�
�� + �k − �k+Q + i���� + �k − �k+Q + i��

, �B18�

with I��k ,q ,Q� analytic, the maximum contribution will oc-
cur for k=q and �=max��k−�k+Q�. For Eq. �B3� the function
V2�k+Q ,k ,−k ,−k−Q� vanishes at the threshold �=max��k
−�k+Q�. This means that the divergence is in fact substan-
tially weaker than at zeroth order. This behavior does not
persist when self-energy corrections to the propagator are
included. This is because the self-energy corrections shift the
thresholds of the response. Stronger than leading-order diver-
gences are also found in Eqs. �B10�–�B16�. To take them into
account the single-particle propagator must be resummed us-
ing a Dyson equation, as in Sec. V D.

APPENDIX C: MATRIX STRUCTURE OF THE BUBBLE
SUMMATION

In this appendix we show that summing all bubble dia-
grams results in the integral Eq. �65� for the matrix �RPA.
The proof follows by induction. Our starting point is expres-
sions �39� and �42� for the dynamical susceptibility. The nth
order contribution to the matrix � is by definition

− �T�X��,Q�k�X†�0,Q�q�U�n�� , �C1�

where

U�n� =
�− 1�n

n! �
m=1

n �
0

�

d�mH4���m� . �C2�

Out of all possible contractions in Eq. �C1� we want to select
only those that give rise to bubble diagrams. We denote their
contribution by ��n�

RPA. We wish to show that

��n�
RPA��,Q�k,q� = �K � K � ¯ � K � �0���,Q�k,q� , �C3�

where K is defined as

K����,Q�k,q� = �
k�

���
0 ��,Q�k,k��V���Q�k�,q� �C4�

and � denotes a convolution and simultaneous matrix multi-
plication

�K � K�����,Q�k,q�

=
1

N
�
k�
� d�1K���� − �1,Q�k,k��K����1,Q�k�,q� .

�C5�

Fourier transforming �C3� then gives

��n�
RPA�i�n,Q�k,q� = �K � K � ¯ � K � �0��i�n,Q�k,q� ,

�C6�

where the convolution � is defined as

�K � K����i�n,Q�k,q�

=
1

N
�
k�

K���i�n,Q�k,k��K���i�n,Q�k�,q� . �C7�

Summing over n then leads to

�RPA�i�n,Q�k,q� = �
n=0

�

��n�
RPA�i�n,Q�k,q� . �C8�

This can be written as

�RPA = �
n=0

�

Kn � �0 = �I − K�−1 � �0, �C9�

where
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Kn = K � K ¯ � K

n

.
︷ ︸︸ ︷

�C10�

The basic identity underlying the inductive proof of Eq. �C3�
is

X��,Q�k�U�n��RPA = �K � K � ¯ � K � X���,Q�k� ,

�C11�
where the contraction notation indicates that only contrac-
tions compatible with our RPA-like summation have been
carried out. Equation �C3� is clearly a direct consequence of
Eq. �C11�. We now prove Eq. �C11� by induction. For n=1
we prove by a lengthy but straightforward calculation that

X��,Q�k�U�1��RPA = �K � X���,Q�k� .
�C12�

The induction step is then straightforward. We have

X��,Q�k�U �n+1��RPA = − �� d�n+1YH4���n+1��RPA,
�C13�

where

Y = �X��,Q�k�U�n��RPA.
�C14�

The combinatorial factor n+1 cancels exactly against the
1 / �n+1� in the definition of U�n+1�. Now using the induction
assumption �C11� in Eq. �C14�, the final contraction in Eq.
�C13� reduces to the induction start n=1, thus establishing
the validity of Eq. �C11� for n+1.

APPENDIX D: ELEMENTS OF �S

Introducing the definitions

B−−�k,k + Q� = −
n�Ek� + n�Ek+Q� − 1

i�n − Ek − Ek+Q
, �D1�

B++�k,k + Q� = −
1 − n�Ek� − n�Ek+Q�

i�n + Ek + Ek+Q
, �D2�

B−+�k,k + Q� = −
n�Ek� − n�Ek+Q�
i�n − Ek + Ek+Q

, �D3�

B+−�k,k + Q� = −
n�Ek+Q� − n�Ek�
i�n + Ek − Ek+Q

, �D4�

the explicit elements of the matrix, Eq. �89�, are

�11
S �i�n,Q�k,k�� = �


,
�=�

Zk

Zk+Q


� B

��k,k + Q���k,k�

− �k,−k�−Q� , �D5�

�12
S �i�n,Q�k,k�� = �


,
�=�


�k�Zk�+Q

� B

��k�,k� + Q���k,k�

− �k,−k�−Q� , �D6�

�13
S �i�n,Q�k,k�� = �


,
�=�



��k+Q�kB

��k,k + Q���k,k�

− �k,−k�−Q� , �D7�

�21
S �i�n,Q�k,k�� = − �


,
�=�


�kZk+Q

� B

��k,k + Q���k,k�

− �k,−k�−Q� , �D8�

�22
S �i�n,Q�k,k�� = �


,
�=�

�Zk+Q

� Zk

−
�k,k�

+ 

��k�k+Q�k,−k�−Q�B

��k,k + Q� ,

�D9�

�23
S �i�n,Q�k,k�� = �


,
�=�


��k+QZk
−
B

��k,k + Q���k,k�

− �k,−k�−Q� , �D10�

�31
S �i�n,Q�k,k�� = �


,
�=�



��k+Q�kB

��k,k + Q���k,k�

− �k,−k�−Q� , �D11�

�32
S �i�n,Q�k,k�� = − �


,
�=�


��k�+QZk�
−
B

��k�,k� + Q���k,k�

− �k,−k�−Q� , �D12�

�33
S �i�n,Q�k,k�� = �


,
�=�

Zk
−
Zk+Q

−
�B

��k,k + Q���k,k�

− �k,−k�−Q� . �D13�

APPENDIX E: FURTHER CONTRIBUTIONS TO THE XXZ
SPIN CHAIN RESPONSE

The calculation described in the main text leads to a re-
sponse that features sharp thresholds even at finite tempera-
ture. Physically one expects these thresholds to be absent at
T�0. The diagrams we consider are incapable of capturing
this effect because they include poles that only depend on
two single-particle energies. This limits the response at posi-
tive frequencies to the regions min�Ek+Eq����max�Ek
+Eq� and 0���max�Ek−Eq� for general k ,q. Coupling to
decay channels involving more than two particles should al-
leviate this problem.

One can evaluate the two-loop self-energy correction to
the propagator. This includes diagrams of the form

, , , . . .
�E1�

In analogy with the one-loop calculation, we define a self-
energy matrix �2. As before the transferred frequency and
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momentum are labeled by ikn and k, respectively. Defining
r=k+ p+q, the elements of the matrix �2

ij are

�2
12 = −

24

N2 �
p,q

Ṽ1�k,− r,p,q�Ṽ0�k,

− r,p,q�
n��q� + n��r� − 1

ikn + �p + �q + �r
	n��p� − nB��q + �r� − 1


−
24

N2 �
p,q

Ṽ1�k,− r,p,q�Ṽ0�− q,− p,r,

− k�
n��q� + n��r� − 1

ikn − �p − �q − �r
	n��p� − nB��q + �r� − 1


+
12

N2 �
p,q

Ṽ1
��r,− p,− q,− k�Ṽ2�r,− k,− p,

− q�
n��q� − n��r�

ikn + �p + �q − �r
	n��p� + nB��r − �q�


+
12

N2 �
p,q

Ṽ1
��r,− p,− q,− k�Ṽ2�k,

− r,p,q�
n��q� − n��r�

ikn − �p − �q + �r
	n��p� + nB��r − �q�
 , �E2�

�2
11 =

96

N2�
p,q

	Ṽ0�k,− r,p,q�
2n��q� + n��r� − 1

ikn + �p + �q + �r
	n��p� − nB��q

+ �r� − 1
 +
6

N2�
p,q

� Ṽ1�k,

− r,p,q��2
n��q� + n��r� − 1

ikn − �p − �q − �r
	n��p� − nB��q + �r� − 1


+
18

N2�
p,q

�Ṽ1�r,− q,− p,− k��2
n��q� − n��r�

ikn + �p + �q − �r
	n��p�

+ nB��r − �q�
 +
8

N2 �
p,q

	Ṽ2�k,

− r,p,q�
2 n��q� − n��r�
ikn − �p − �q + �r

	n��p� + nB��r − �q�
 . �E3�

Here we have used the boson occupation factor, nB���
=1 / 	exp����−1
. The remaining elements of the two-loop
self-energy are obtained via

�2
22 = − ��2

11��, �E4�

�2
21 = ��2

12��. �E5�

These contributions have poles that feature three single-
particle energies. Some of these contributions will lead to a
temperature-dependent broadening of the response in the vi-
cinities of ���J and ��0. Including the two-loop self-
energy terms should further increase the quality of our ap-
proximation. However the extra sum over the loop
momentum means that such a computation would be a factor
of N�400 slower.
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